TradeWithConfidence

ANN Strategy Indicator 3.2 (Rebuilt By Kevin Manrrique)

FX:AUDUSD   Australian Dollar/U.S. Dollar
7 months ago
So I rebuilt the ANN Strategy with my own codes I added. It took me a long time to get this far, the first 2 weeks it wasn't repainting but then it started repainting slowly. Not hard like the original script. Please feel free to edit the script and post it at the bottom. Thank you everyone! I hope this script I rebuilt can help people! That's why were all here for, a community!

This script is meant to be use in hourly time frames!
If possible use with USD pairs.
Works great with news also!

//@version=2
study("ANN Strategy Indicator 3.2 (Rebuilt By Kevin Manrrique)", overlay=false, precision=777)

threshold = input(title="Threshold", type=float, defval=0.001, step=0.001)
largeTimeframe = input(title="Large timeframe", type=resolution, defval='D')
smallTimeframe = input(title="Small timeframe", type=resolution, defval='60')

PineActivationFunctionLinear(v) => v
PineActivationFunctionTanh(v) =>
( exp             (v) - exp             (-v))/( exp             (v) + exp             (-v))

ANN(input) =>
l0_0 = PineActivationFunctionLinear(input)
l0_1 = PineActivationFunctionLinear(input)
l0_2 = PineActivationFunctionLinear(input)
l0_3 = PineActivationFunctionLinear(input)
l0_4 = PineActivationFunctionLinear(input)
l0_5 = PineActivationFunctionLinear(input)
l0_6 = PineActivationFunctionLinear(input)
l0_7 = PineActivationFunctionLinear(input)
l0_8 = PineActivationFunctionLinear(input)
l0_9 = PineActivationFunctionLinear(input)
l0_10 = PineActivationFunctionLinear(input)
l0_11 = PineActivationFunctionLinear(input)
l0_12 = PineActivationFunctionLinear(input)
l0_13 = PineActivationFunctionLinear(input)
l0_14 = PineActivationFunctionLinear(input)

l1_0 = PineActivationFunctionTanh(l0_0*5.040340774 + l0_1*-1.3025994088 + l0_2*19.4225543981 + l0_3*1.1796960423 + l0_4*2.4299395823 + l0_5*3.159003445 + l0_6*4.6844527551 + l0_7*-6.1079267196 + l0_8*-2.4952869198 + l0_9*-4.0966081154 + l0_10*-2.2432843111 + l0_11*-0.6105764807 + l0_12*-0.0775684605 + l0_13*-0.7984753138 + l0_14*3.4495907342)
l1_1 = PineActivationFunctionTanh(l0_0*5.9559031982 + l0_1*-3.1781960056 + l0_2*-1.6337491061 + l0_3*-4.3623166512 + l0_4*0.9061990402 + l0_5*-0.731285093 + l0_6*-6.2500232251 + l0_7*0.1356087758 + l0_8*-0.8570572885 + l0_9*-4.0161353298 + l0_10*1.5095552083 + l0_11*1.324789197 + l0_12*-0.1011973878 + l0_13*-2.3642090162 + l0_14*-0.7160862442)
l1_2 = PineActivationFunctionTanh(l0_0*4.4350881378 + l0_1*-2.8956461034 + l0_2*1.4199762607 + l0_3*-0.6436844261 + l0_4*1.1124274281 + l0_5*-4.0976954985 + l0_6*2.9317456342 + l0_7*0.0798318393 + l0_8*-5.5718144311 + l0_9*-0.6623352208 +l0_10*3.2405203222 + l0_11*-10.6253384513 + l0_12*4.7132919253 + l0_13*-5.7378151597 + l0_14*0.3164836695)
l1_3 = PineActivationFunctionTanh(l0_0*-6.1194605467 + l0_1*7.7935605604 + l0_2*-0.7587522153 + l0_3*9.8382495905 + l0_4*0.3274314734 + l0_5*1.8424796541 + l0_6*-1.2256355427 + l0_7*-1.5968600758 + l0_8*1.9937700922 + l0_9*5.0417809111 + l0_10*-1.9369944654 + l0_11*6.1013201778 + l0_12*1.5832910747 + l0_13*-2.148403244 + l0_14*1.5449437366)
l1_4 = PineActivationFunctionTanh(l0_0*3.5700040028 + l0_1*-4.4755892733 + l0_2*0.1526702072 + l0_3*-0.3553664401 + l0_4*-2.3777962662 + l0_5*-1.8098849587 + l0_6*-3.5198449134 + l0_7*-0.4369370497 + l0_8*2.3350169623 + l0_9*1.9328960346 + l0_10*1.1824141812 + l0_11*3.0565148049 + l0_12*-9.3253401534 + l0_13*1.6778555498 + l0_14*-3.045794332)
l1_5 = PineActivationFunctionTanh(l0_0*3.6784907623 + l0_1*1.1623683715 + l0_2*7.1366362145 + l0_3*-5.6756546585 + l0_4*12.7019884334 + l0_5*-1.2347823331 + l0_6*2.3656619827 + l0_7*-8.7191778213 + l0_8*-13.8089238753 + l0_9*5.4335943836 + l0_10*-8.1441181338 + l0_11*-10.5688113287 + l0_12*6.3964140758 + l0_13*-8.9714236223 + l0_14*-34.0255456929)
l1_6 = PineActivationFunctionTanh(l0_0*-0.4344517548 + l0_1*-3.8262167437 + l0_2*-0.2051098003 + l0_3*0.6844201221 + l0_4*1.1615893422 + l0_5*-0.404465314 + l0_6*-0.1465747632 + l0_7*-0.006282458 + l0_8*0.1585655487
7 months ago
Comment: For the color green LINE, replace with > (exp(v) - exp(-v))/(exp(v) + exp(-v))
7 months ago
Comment: UPDATE: I don't know tradingview is hiding some of the coding. Here's a link to my google of the script you guys can copy from.

https://docs.google.com/document/d/1QvPh8IAVSPAtJNIaUcFBbTU-fyIbuoOYbUKoTwQS668/edit?usp=sharing
Germaine_Mills
7 months ago
I just started using

this one:
Daily Close Comparison Strategy (by ChartArt via sirolf2009)


will check this out
Reply
TradeWithConfidence Germaine_Mills
7 months ago
But does it repaint? That's the question. The problem with 1 line indicators is that sometimes it touches the baseline ACCIDENTALLY. In My updated Strategy Indicator that I rebuilt it uses spikes. So no faulty mistakes. But I can work on this code that @ChartArt used. Thank you for sharing @Germaine_Mills
Reply
Germaine_Mills TradeWithConfidence
7 months ago
this code does repaint i made a nice indicator from it its very accurate i increased my win:loss ratio
+1 Reply
Germaine_Mills
7 months ago
Processing script...
line 10: missing BEGIN at '|B|'
Script 'ANN Strategy Indicator 3.2' has been saved
Reply
Replace line of color green letters with this > (exp(v) - exp(-v))/(exp(v) + exp(-v))
Reply
I don't know why I cut off, here's the full script!

//@version=2
study("ANN Strategy Indicator 3.2 (Rebuilt By Kevin Manrrique)", overlay=false, precision=777)

threshold = input(title="Threshold", type=float, defval=0.001, step=0.001)
largeTimeframe = input(title="Large timeframe", type=resolution, defval='D')
smallTimeframe = input(title="Small timeframe", type=resolution, defval='60')

PineActivationFunctionLinear(v) => v
PineActivationFunctionTanh(v) =>
(exp(v) - exp(-v))/(exp(v) + exp(-v))

ANN(input) =>
l0_0 = PineActivationFunctionLinear(input)
l0_1 = PineActivationFunctionLinear(input)
l0_2 = PineActivationFunctionLinear(input)
l0_3 = PineActivationFunctionLinear(input)
l0_4 = PineActivationFunctionLinear(input)
l0_5 = PineActivationFunctionLinear(input)
l0_6 = PineActivationFunctionLinear(input)
l0_7 = PineActivationFunctionLinear(input)
l0_8 = PineActivationFunctionLinear(input)
l0_9 = PineActivationFunctionLinear(input)
l0_10 = PineActivationFunctionLinear(input)
l0_11 = PineActivationFunctionLinear(input)
l0_12 = PineActivationFunctionLinear(input)
l0_13 = PineActivationFunctionLinear(input)
l0_14 = PineActivationFunctionLinear(input)

l1_0 = PineActivationFunctionTanh(l0_0*5.040340774 + l0_1*-1.3025994088 + l0_2*19.4225543981 + l0_3*1.1796960423 + l0_4*2.4299395823 + l0_5*3.159003445 + l0_6*4.6844527551 + l0_7*-6.1079267196 + l0_8*-2.4952869198 + l0_9*-4.0966081154 + l0_10*-2.2432843111 + l0_11*-0.6105764807 + l0_12*-0.0775684605 + l0_13*-0.7984753138 + l0_14*3.4495907342)
l1_1 = PineActivationFunctionTanh(l0_0*5.9559031982 + l0_1*-3.1781960056 + l0_2*-1.6337491061 + l0_3*-4.3623166512 + l0_4*0.9061990402 + l0_5*-0.731285093 + l0_6*-6.2500232251 + l0_7*0.1356087758 + l0_8*-0.8570572885 + l0_9*-4.0161353298 + l0_10*1.5095552083 + l0_11*1.324789197 + l0_12*-0.1011973878 + l0_13*-2.3642090162 + l0_14*-0.7160862442)
l1_2 = PineActivationFunctionTanh(l0_0*4.4350881378 + l0_1*-2.8956461034 + l0_2*1.4199762607 + l0_3*-0.6436844261 + l0_4*1.1124274281 + l0_5*-4.0976954985 + l0_6*2.9317456342 + l0_7*0.0798318393 + l0_8*-5.5718144311 + l0_9*-0.6623352208 +l0_10*3.2405203222 + l0_11*-10.6253384513 + l0_12*4.7132919253 + l0_13*-5.7378151597 + l0_14*0.3164836695)
l1_3 = PineActivationFunctionTanh(l0_0*-6.1194605467 + l0_1*7.7935605604 + l0_2*-0.7587522153 + l0_3*9.8382495905 + l0_4*0.3274314734 + l0_5*1.8424796541 + l0_6*-1.2256355427 + l0_7*-1.5968600758 + l0_8*1.9937700922 + l0_9*5.0417809111 + l0_10*-1.9369944654 + l0_11*6.1013201778 + l0_12*1.5832910747 + l0_13*-2.148403244 + l0_14*1.5449437366)
l1_4 = PineActivationFunctionTanh(l0_0*3.5700040028 + l0_1*-4.4755892733 + l0_2*0.1526702072 + l0_3*-0.3553664401 + l0_4*-2.3777962662 + l0_5*-1.8098849587 + l0_6*-3.5198449134 + l0_7*-0.4369370497 + l0_8*2.3350169623 + l0_9*1.9328960346 + l0_10*1.1824141812 + l0_11*3.0565148049 + l0_12*-9.3253401534 + l0_13*1.6778555498 + l0_14*-3.045794332)
l1_5 = PineActivationFunctionTanh(l0_0*3.6784907623 + l0_1*1.1623683715 + l0_2*7.1366362145 + l0_3*-5.6756546585 + l0_4*12.7019884334 + l0_5*-1.2347823331 + l0_6*2.3656619827 + l0_7*-8.7191778213 + l0_8*-13.8089238753 + l0_9*5.4335943836 + l0_10*-8.1441181338 + l0_11*-10.5688113287 + l0_12*6.3964140758 + l0_13*-8.9714236223 + l0_14*-34.0255456929)
l1_6 = PineActivationFunctionTanh(l0_0*-0.4344517548 + l0_1*-3.8262167437 + l0_2*-0.2051098003 + l0_3*0.6844201221 + l0_4*1.1615893422 + l0_5*-0.404465314 + l0_6*-0.1465747632 + l0_7*-0.006282458 + l0_8*0.1585655487 + l0_9*1.1994484991 + l0_10*-0.9879081404 + l0_11*-0.3564970612 + l0_12*1.5814717823 + l0_13*-0.9614804676 + l0_14*0.9204822346)
l1_7 = PineActivationFunctionTanh(l0_0*-4.2700957175 + l0_1*9.4328591157 + l0_2*-4.3045548 + l0_3*5.0616868842 + l0_4*3.3388781058 + l0_5*-2.1885073225 + l0_6*-6.506301518 + l0_7*3.8429000108 + l0_8*-1.6872237349 + l0_9*2.4107095799 + l0_10*-3.0873985314 + l0_11*-2.8358325447 + l0_12*2.4044366491 + l0_13*0.636779082 + l0_14*-13.2173215035)
l1_8 = PineActivationFunctionTanh(l0_0*-8.3224697492 + l0_1*-9.4825530183 + l0_2*3.5294389835 + l0_3*0.1538618049 + l0_4*-13.5388631898 + l0_5*-0.1187936017 + l0_6*-8.4582741139 + l0_7*5.1566299292 + l0_8*10.345519938 + l0_9*2.9211759333 + l0_10*-5.0471804233 + l0_11*4.9255989983 + l0_12*-9.9626142544 + l0_13*23.0043143258 + l0_14*20.9391809343)
l1_9 = PineActivationFunctionTanh(l0_0*-0.9120518654 + l0_1*0.4991807488 + l0_2*-1.877244586 + l0_3*3.1416466525 + l0_4*1.063709676 + l0_5*0.5210126835 + l0_6*-4.9755780108 + l0_7*2.0336532347 + l0_8*-1.1793121093 + l0_9*-0.730664855 + l0_10*-2.3515987428 + l0_11*-0.1916546514 + l0_12*-2.2530340504 + l0_13*-0.2331829119 + l0_14*0.7216218149)
l1_10 = PineActivationFunctionTanh(l0_0*-5.2139618683 + l0_1*1.0663790028 + l0_2*1.8340834959 + l0_3*1.6248173447 + l0_4*-0.7663740145 + l0_5*0.1062788171 + l0_6*2.5288021501 + l0_7*-3.4066549066 + l0_8*-4.9497988755 + l0_9*-2.3060668143 + l0_10*-1.3962486274 + l0_11*0.6185583427 + l0_12*0.2625299576 + l0_13*2.0270246444 + l0_14*0.6372015811)
l1_11 = PineActivationFunctionTanh(l0_0*0.2020072665 + l0_1*0.3885852709 + l0_2*-0.1830248843 + l0_3*-1.2408598444 + l0_4*-0.6365798088 + l0_5*1.8736534268 + l0_6*0.656206442 + l0_7*-0.2987482678 + l0_8*-0.2017485963 + l0_9*-1.0604095303 + l0_10*0.239793356 + l0_11*-0.3614172938 + l0_12*0.2614678044 + l0_13*1.0083551762 + l0_14*-0.5473833797)
l1_12 = PineActivationFunctionTanh(l0_0*-0.4367517149 + l0_1*-10.0601304934 + l0_2*1.9240604838 + l0_3*-1.3192184047 + l0_4*-0.4564760159 + l0_5*-0.2965270368 + l0_6*-1.1407423613 + l0_7*2.0949647291 + l0_8*-5.8212599297 + l0_9*-1.3393321939 + l0_10*7.6624548265 + l0_11*1.1309391851 + l0_12*-0.141798054 + l0_13*5.1416736187 + l0_14*-1.8142503125)
l1_13 = PineActivationFunctionTanh(l0_0*1.103948336 + l0_1*-1.4592033032 + l0_2*0.6146278432 + l0_3*0.5040966421 + l0_4*-2.4276090772 + l0_5*-0.0432902426 + l0_6*-0.0044259999 + l0_7*-0.5961347308 + l0_8*0.3821026107 + l0_9*0.6169102373 +l0_10*-0.1469847611 + l0_11*-0.0717167683 + l0_12*-0.0352403695 + l0_13*1.2481310788 + l0_14*0.1339628411)
l1_14 = PineActivationFunctionTanh(l0_0*-9.8049980534 + l0_1*13.5481068519 + l0_2*-17.1362809025 + l0_3*0.7142100864 + l0_4*4.4759163422 + l0_5*4.5716161777 + l0_6*1.4290884628 + l0_7*8.3952862712 + l0_8*-7.1613700432 + l0_9*-3.3249489518+ l0_10*-0.7789587912 + l0_11*-1.7987628873 + l0_12*13.364752545 + l0_13*5.3947219678 + l0_14*12.5267547127)
l1_15 = PineActivationFunctionTanh(l0_0*0.9869461803 + l0_1*1.9473351905 + l0_2*2.032925759 + l0_3*7.4092080633 + l0_4*-1.9257741399 + l0_5*1.8153585328 + l0_6*1.1427866392 + l0_7*-0.3723167449 + l0_8*5.0009927384 + l0_9*-0.2275103411 + l0_10*2.8823012914 + l0_11*-3.0633141934 + l0_12*-2.785334815 + l0_13*2.727981E-4 + l0_14*-0.1253009512)
l1_16 = PineActivationFunctionTanh(l0_0*4.9418118585 + l0_1*-2.7538199876 + l0_2*-16.9887588104 + l0_3*8.8734475297 + l0_4*-16.3022734814 + l0_5*-4.562496601 + l0_6*-1.2944373699 + l0_7*-9.6022946986 + l0_8*-1.018393866 + l0_9*-11.4094515429 + l0_10*24.8483091382 + l0_11*-3.0031522277 + l0_12*0.1513114555 + l0_13*-6.7170487021 + l0_14*-14.7759227576)
l1_17 = PineActivationFunctionTanh(l0_0*5.5931454656 + l0_1*2.22272078 + l0_2*2.603416897 + l0_3*1.2661196599 + l0_4*-2.842826446 + l0_5*-7.9386099121 + l0_6*2.8278849111 + l0_7*-1.2289445238 + l0_8*4.571484248 + l0_9*0.9447425595 + l0_10*4.2890688351 + l0_11*-3.3228258483 + l0_12*4.8866215526 + l0_13*1.0693412194 + l0_14*-1.963203112)
l1_18 = PineActivationFunctionTanh(l0_0*0.2705520264 + l0_1*0.4002328199 + l0_2*0.1592515845 + l0_3*0.371893552 + l0_4*-1.6639467871 + l0_5*2.2887318884 + l0_6*-0.148633664 + l0_7*-0.6517792263 + l0_8*-0.0993032992 + l0_9*-0.964940376 + l0_10*0.1286342935 + l0_11*0.4869943595 + l0_12*1.4498648166 + l0_13*-0.3257333384 + l0_14*-1.3496419812)
l1_19 = PineActivationFunctionTanh(l0_0*-1.3223200798 + l0_1*-2.2505204324 + l0_2*0.8142804525 + l0_3*-0.848348177 + l0_4*0.7208860589 + l0_5*1.2033423756 + l0_6*-0.1403005786 + l0_7*0.2995941644 + l0_8*-1.1440473062 + l0_9*1.067752916 + l0_10*-1.2990534679 + l0_11*1.2588583869 + l0_12*0.7670409455 + l0_13*2.7895972983 + l0_14*-0.5376152512)
l1_20 = PineActivationFunctionTanh(l0_0*0.7382351572 + l0_1*-0.8778865631 + l0_2*1.0950766363 + l0_3*0.7312146997 + l0_4*2.844781386 + l0_5*2.4526730903 + l0_6*-1.9175165077 + l0_7*-0.7443755288 + l0_8*-3.1591419438 + l0_9*0.8441602697 + l0_10*1.1979484448 + l0_11*2.138098544 + l0_12*0.9274159536 + l0_13*-2.1573448803 + l0_14*-3.7698356464)
l1_21 = PineActivationFunctionTanh(l0_0*5.187120117 + l0_1*-7.7525670576 + l0_2*1.9008346975 + l0_3*-1.2031603996 + l0_4*5.917669142 + l0_5*-3.1878682719 + l0_6*1.0311747828 + l0_7*-2.7529484612 + l0_8*-1.1165884578 + l0_9*2.5524942323 + l0_10*-0.38623241 + l0_11*3.7961317445 + l0_12*-6.128820883 + l0_13*-2.1470707709 + l0_14*2.0173792965)
l1_22 = PineActivationFunctionTanh(l0_0*-6.0241676562 + l0_1*0.7474455584 + l0_2*1.7435724844 + l0_3*0.8619835076 + l0_4*-0.1138406797 + l0_5*6.5979359352 + l0_6*1.6554154348 + l0_7*-3.7969458806 + l0_8*1.1139097376 + l0_9*-1.9588417 + l0_10*3.5123392221 + l0_11*9.4443103128 + l0_12*-7.4779291395 + l0_13*3.6975940671 + l0_14*8.5134262747)
l1_23 = PineActivationFunctionTanh(l0_0*-7.5486576471 + l0_1*-0.0281420865 + l0_2*-3.8586839454 + l0_3*-0.5648792233 + l0_4*-7.3927282026 + l0_5*-0.3857538046 + l0_6*-2.9779885698 + l0_7*4.0482279965 + l0_8*-1.1522499578 + l0_9*-4.1562500212 + l0_10*0.7813134307 + l0_11*-1.7582667612 + l0_12*1.7071109988 + l0_13*6.9270873208 + l0_14*-4.5871357362)
l1_24 = PineActivationFunctionTanh(l0_0*-5.3603442228 + l0_1*-9.5350611629 + l0_2*1.6749984422 + l0_3*-0.6511065892 + l0_4*-0.8424823239 + l0_5*1.9946675213 + l0_6*-1.1264361638 + l0_7*0.3228676616 + l0_8*5.3562230396 + l0_9*-1.6678168952+ l0_10*1.2612580068 + l0_11*-3.5362671399 + l0_12*-9.3895191366 + l0_13*2.0169228673 + l0_14*-3.3813191557)
l1_25 = PineActivationFunctionTanh(l0_0*1.1362866429 + l0_1*-1.8960071702 + l0_2*5.7047307243 + l0_3*-1.6049785053 + l0_4*-4.8353898931 + l0_5*-1.4865381145 + l0_6*-0.2846893475 + l0_7*2.2322095997 + l0_8*2.0930488668 + l0_9*1.7141411002 + l0_10*-3.4106032176 + l0_11*3.0593289612 + l0_12*-5.0894813904 + l0_13*-0.5316299133 + l0_14*0.4705265416)
l1_26 = PineActivationFunctionTanh(l0_0*-0.9401400975 + l0_1*-0.9136086957 + l0_2*-3.3808688582 + l0_3*4.7200776773 + l0_4*3.686296919 + l0_5*14.2133723935 + l0_6*1.5652940954 + l0_7*-0.2921139433 + l0_8*1.0244504511 + l0_9*-7.6918299134 + l0_10*-0.594936135 + l0_11*-1.4559914156 + l0_12*2.8056435224 + l0_13*2.6103905733 + l0_14*2.3412348872)
l1_27 = PineActivationFunctionTanh(l0_0*1.1573980186 + l0_1*2.9593661909 + l0_2*0.4512594325 + l0_3*-0.9357210858 + l0_4*-1.2445804495 + l0_5*4.2716471631 + l0_6*1.5167912375 + l0_7*1.5026853293 + l0_8*1.3574772038 + l0_9*-1.9754386842 + l0_10*6.727671436 + l0_11*8.0145772889 + l0_12*7.3108970663 + l0_13*-2.5005627841 + l0_14*8.9604502277)
l1_28 = PineActivationFunctionTanh(l0_0*6.3576350212 + l0_1*-2.9731672725 + l0_2*-2.7763558082 + l0_3*-3.7902984555 + l0_4*-1.0065574585 + l0_5*-0.7011836061 + l0_6*-1.0298068578 + l0_7*1.201007784 + l0_8*-0.7835862254 + l0_9*-3.9863597435 + l0_10*6.7851825502 + l0_11*1.1120256721 + l0_12*-2.263287351 + l0_13*1.8314374104 + l0_14*-2.279102097)
l1_29 = PineActivationFunctionTanh(l0_0*-7.8741911036 + l0_1*-5.3370618518 + l0_2*11.9153868964 + l0_3*-4.1237170553 + l0_4*2.9491152758 + l0_5*1.0317132502 + l0_6*2.2992199883 + l0_7*-2.0250502364 + l0_8*-11.0785995839 + l0_9*-6.3615588554 + l0_10*-1.1687644976 + l0_11*6.3323478015 + l0_12*6.0195076962 + l0_13*-2.8972208702 + l0_14*3.6107747183)

l2_0 = PineActivationFunctionTanh(l1_0*-0.590546797 + l1_1*0.6608304658 + l1_2*-0.3358268839 + l1_3*-0.748530283 + l1_4*-0.333460383 + l1_5*-0.3409307681 + l1_6*0.1916558198 + l1_7*-0.1200399453 + l1_8*-0.5166151854 + l1_9*-0.8537164676 +l1_10*-0.0214448647 + l1_11*-0.553290271 + l1_12*-1.2333302892 + l1_13*-0.8321813811 + l1_14*-0.4527761741 + l1_15*0.9012545631 + l1_16*0.415853215 + l1_17*0.1270548319 + l1_18*0.2000460279 + l1_19*-0.1741942671 + l1_20*0.419830522 + l1_21*-0.059839291 + l1_22*-0.3383001769 + l1_23*0.1617814073 + l1_24*0.3071848006 + l1_25*-0.3191182045 + l1_26*-0.4981831822 + l1_27*-1.467478375 + l1_28*-0.1676432563 + l1_29*1.2574849126)
l2_1 = PineActivationFunctionTanh(l1_0*-0.5514235841 + l1_1*0.4759190049 + l1_2*0.2103576983 + l1_3*-0.4754377924 + l1_4*-0.2362941295 + l1_5*0.1155082119 + l1_6*0.7424215794 + l1_7*-0.3674198672 + l1_8*0.8401574461 + l1_9*0.6096563193 + l1_10*0.7437935674 + l1_11*-0.4898638101 + l1_12*-0.4168668092 + l1_13*-0.0365111095 + l1_14*-0.342675224 + l1_15*0.1870268765 + l1_16*-0.5843050987 + l1_17*-0.4596547471 + l1_18*0.452188522 + l1_19*-0.6737126684 + l1_20*0.6876072741 + l1_21*-0.8067776704 + l1_22*0.7592979467 + l1_23*-0.0768239468 + l1_24*0.370536097 + l1_25*-0.4363884671 + l1_26*-0.419285676 + l1_27*0.4380251141 + l1_28*0.0822528948 + l1_29*-0.2333910809)
l2_2 = PineActivationFunctionTanh(l1_0*-0.3306539521 + l1_1*-0.9382247194 + l1_2*0.0746711276 + l1_3*-0.3383838985 + l1_4*-0.0683232217 + l1_5*-0.2112358049 + l1_6*-0.9079234054 + l1_7*0.4898595603 + l1_8*-0.2039825863 + l1_9*1.0870698641+ l1_10*-1.1752901237 + l1_11*1.1406403923 + l1_12*-0.6779626786 + l1_13*0.4281048906 + l1_14*-0.6327670055 + l1_15*-0.1477678844 + l1_16*0.2693637584 + l1_17*0.7250738509 + l1_18*0.7905904504 + l1_19*-1.6417250883 + l1_20*-0.2108095534 +l1_21*-0.2698557472 + l1_22*-0.2433656685 + l1_23*-0.6289943273 + l1_24*0.436428207 + l1_25*-0.8243825184 + l1_26*-0.8583496686 + l1_27*0.0983131026 + l1_28*-0.4107462518 + l1_29*0.5641683087)
l2_3 = PineActivationFunctionTanh(l1_0*1.7036869992 + l1_1*-0.6683507666 + l1_2*0.2589197112 + l1_3*0.032841148 + l1_4*-0.4454796342 + l1_5*-0.6196149423 + l1_6*-0.1073622976 + l1_7*-0.1926393101 + l1_8*1.5280232458 + l1_9*-0.6136527036 +l1_10*-1.2722934357 + l1_11*0.2888655811 + l1_12*-1.4338638512 + l1_13*-1.1903556863 + l1_14*-1.7659663905 + l1_15*0.3703086867 + l1_16*1.0409140889 + l1_17*0.0167382209 + l1_18*0.6045646461 + l1_19*4.2388788116 + l1_20*1.4399738234 + l1_21*0.3308571935 + l1_22*1.4501137667 + l1_23*0.0426123724 + l1_24*-0.708479795 + l1_25*-1.2100800732 + l1_26*-0.5536278651 + l1_27*1.3547250573 + l1_28*1.2906250286 + l1_29*0.0596007114)
l2_4 = PineActivationFunctionTanh(l1_0*-0.462165126 + l1_1*-1.0996742176 + l1_2*1.0928262999 + l1_3*1.806407067 + l1_4*0.9289147669 + l1_5*0.8069022793 + l1_6*0.2374237802 + l1_7*-2.7143979019 + l1_8*-2.7779203877 + l1_9*0.214383903 + l1_10*-1.3111536623 + l1_11*-2.3148813568 + l1_12*-2.4755355804 + l1_13*-0.6819733236 + l1_14*0.4425615226 + l1_15*-0.1298218043 + l1_16*-1.1744832824 + l1_17*-0.395194848 + l1_18*-0.2803397703 + l1_19*-0.4505071197 + l1_20*-0.8934956598 + l1_21*3.3232916348 + l1_22*-1.7359534851 + l1_23*3.8540421743 + l1_24*1.4424032523 + l1_25*0.2639823693 + l1_26*0.3597053634 + l1_27*-1.0470693728 + l1_28*1.4133480357 + l1_29*0.6248098695)
l2_5 = PineActivationFunctionTanh(l1_0*0.2215807411 + l1_1*-0.5628295071 + l1_2*-0.8795982905 + l1_3*0.9101585104 + l1_4*-1.0176831976 + l1_5*-0.0728884401 + l1_6*0.6676331658 + l1_7*-0.7342174108 + l1_8*9.4428E-4 + l1_9*0.6439774272 + l1_10*-0.0345236026 + l1_11*0.5830977027 + l1_12*-0.4058921837 + l1_13*-0.3991888077 + l1_14*-1.0090426973 + l1_15*-0.9324780698 + l1_16*-0.0888749165 + l1_17*0.2466351736 + l1_18*0.4993304601 + l1_19*-1.115408696 + l1_20*0.9914246705 + l1_21*0.9687743445 + l1_22*0.1117130875 + l1_23*0.7825109733 + l1_24*0.2217023612 + l1_25*0.3081256411 + l1_26*-0.1778007966 + l1_27*-0.3333287743 + l1_28*1.0156352461 + l1_29*-0.1456257813)
l2_6 = PineActivationFunctionTanh(l1_0*-0.5461783383 + l1_1*0.3246015999 + l1_2*0.1450605434 + l1_3*-1.3179944349 + l1_4*-1.5481775261 + l1_5*-0.679685633 + l1_6*-0.9462335139 + l1_7*-0.6462399371 + l1_8*0.0991658683 + l1_9*0.1612892194 +l1_10*-1.037660602 + l1_11*-0.1044778824 + l1_12*0.8309203243 + l1_13*0.7714766458 + l1_14*0.2566767663 + l1_15*0.8649416329 + l1_16*-0.5847461285 + l1_17*-0.6393969272 + l1_18*0.8014049359 + l1_19*0.2279568228 + l1_20*1.0565217821 + l1_21*0.134738029 + l1_22*0.3420395576 + l1_23*-0.2417397219 + l1_24*0.3083072038 + l1_25*0.6761739059 + l1_26*-0.4653817053 + l1_27*-1.0634057566 + l1_28*-0.5658892281 + l1_29*-0.6947283681)
l2_7 = PineActivationFunctionTanh(l1_0*-0.5450410944 + l1_1*0.3912849372 + l1_2*-0.4118641117 + l1_3*0.7124695074 + l1_4*-0.7510266122 + l1_5*1.4065673913 + l1_6*0.9870731545 + l1_7*-0.2609363107 + l1_8*-0.3583639958 + l1_9*0.5436375706 +l1_10*0.4572450099 + l1_11*-0.4651538878 + l1_12*-0.2180218212 + l1_13*0.5241262959 + l1_14*-0.8529323253 + l1_15*-0.4200378937 + l1_16*0.4997885721 + l1_17*-1.1121528189 + l1_18*0.5992411048 + l1_19*-1.0263270781 + l1_20*-1.725160642 + l1_21*-0.2653995722 + l1_22*0.6996703032 + l1_23*0.348549086 + l1_24*0.6522482482 + l1_25*-0.7931928436 + l1_26*-0.5107994359 + l1_27*0.0509642698 + l1_28*0.8711187423 + l1_29*0.8999449627)
l2_8 = PineActivationFunctionTanh(l1_0*-0.7111081522 + l1_1*0.4296245062 + l1_2*-2.0720732038 + l1_3*-0.4071818684 + l1_4*1.0632721681 + l1_5*0.8463224325 + l1_6*-0.6083948423 + l1_7*1.1827669608 + l1_8*-0.9572307844 + l1_9*-0.9080517673 + l1_10*-0.0479029057 + l1_11*-1.1452853213 + l1_12*0.2884352688 + l1_13*0.1767851586 + l1_14*-1.089314461 + l1_15*1.2991763966 + l1_16*1.6236630806 + l1_17*-0.7720263697 + l1_18*-0.5011541755 + l1_19*-2.3919413568 + l1_20*0.0084018338 + l1_21*0.9975216139 + l1_22*0.4193541029 + l1_23*1.4623834571 + l1_24*-0.6253069691 + l1_25*0.6119677341 + l1_26*0.5423948388 + l1_27*1.0022450377 + l1_28*-1.2392984069 + l1_29*1.5021529822)

l3_0 = PineActivationFunctionTanh(l2_0*0.3385061186 + l2_1*0.6218531956 + l2_2*-0.7790340983 + l2_3*0.1413078332 + l2_4*0.1857010624 + l2_5*-0.1769456351 + l2_6*-0.3242337911 + l2_7*-0.503944883 + l2_8*0.1540568869)

entryToday = security(tickerid, largeTimeframe, ohlc4)
entryHour = security(tickerid, largeTimeframe, ohlc4)
entry = (entryHour-entryToday)/entryToday
exitToday = security(tickerid, smallTimeframe, ohlc4)
exitHour = security(tickerid, smallTimeframe, ohlc4)
exit = (exitHour-exitToday)/exitToday

exitPrediction = ANN(exit)
entryPrediction = ANN(entry)
goLong = entryPrediction < -threshold and exitPrediction < -threshold
goShort = entryPrediction > threshold and exitPrediction > threshold
baseline=0.50

plot(goShort, style=line, linewidth=2, color=green, title="Buy")
plot(goLong, style=line, linewidth=2, color=red, title="Sell")
plot(baseline, style=line, color=black, title="Baseline")
+1 Reply
entryToday = security(tickerid, largeTimeframe, ohlc4)
entryHour = security(tickerid, largeTimeframe, ohlc4)
entry = (entryHour-entryToday)/entryToday
exitToday = security(tickerid, smallTimeframe, ohlc4)
exitHour = security(tickerid, smallTimeframe, ohlc4)
exit = (exitHour-exitToday)/exitToday

Add ,
Reply
TradeWithConfidence TradeWithConfidence
7 months ago
Okay everyone! I don't know why it hides the number but There's 4 OHLC4 at the bottom of the script.
So there are 4 lines right?
The first line add a 1 after the ohlc4 enclosed with brackets
2nd line same thing but 0.99
line 3 same as line 1, add a 1 then enclose it with brackets
then line 4 same as line 3, 0.99 enclose with brackets
Reply
Germaine_Mills TradeWithConfidence
7 months ago
maybe pastebin or gist would make this easier to paste
+1 Reply
Attached a link.
Reply
LuCi
6 months ago
Hi Kevin!
I'm trying to study this strategy ..
thank you for your contribution and your hard work!
i'm testing your indi on 60m for short (time) intraday pos.

thank you for your input and work!
Reply
LuCi LuCi
6 months ago
snapshot
Reply
wiserltz
5 months ago
From this code:

ANN(input) =>
l0_0 = PineActivationFunctionLinear(input)
l0_1 = PineActivationFunctionLinear(input)
l0_2 = PineActivationFunctionLinear(input)
l0_3 = PineActivationFunctionLinear(input)
l0_4 = PineActivationFunctionLinear(input)
l0_5 = PineActivationFunctionLinear(input)
l0_6 = PineActivationFunctionLinear(input)
l0_7 = PineActivationFunctionLinear(input)
l0_8 = PineActivationFunctionLinear(input)
l0_9 = PineActivationFunctionLinear(input)
l0_10 = PineActivationFunctionLinear(input)
l0_11 = PineActivationFunctionLinear(input)
l0_12 = PineActivationFunctionLinear(input)
l0_13 = PineActivationFunctionLinear(input)
l0_14 = PineActivationFunctionLinear(input)

which means l0_0 == l0_2 == l0_3 ... == l0_14

So the first layer of Ann simply as: input
And logic of the Ann may further simply something like: tanh(w1*tanh(w2*tanh(w3*input)))
where w1,w2,w3 is only some number(not matrix), so there isn't some magic here, just tanh in series for today's ohlc4 diff, am I right?
Reply
wiserltz wiserltz
5 months ago
This is why we can replace this indicator with a non Ann version?

Daily Close Comparison Strategy (by ChartArt via sirolf2009)

Reply
mortdiggiddy PRO wiserltz
2 months ago
There is no back propagation that I am aware of. I don't see how the weights are altered for each layer of the network, so there is not instruction. I am not sure how this is working.
Reply
mortdiggiddy PRO mortdiggiddy
2 months ago
Unless I am reading Pine script incorrectly, for each round (each bar on a 60 minute chart), the weights are not updated to correct for the actual difference calculation compared to the expected. I think this algorithm is 95% of the way there and I commend the effort, but I believe it is incomplete.
Reply
I believe there is a slight typo at the end of the full script.

goLong = entryPrediction < -threshold and exitPrediction < -threshold
goShort = entryPrediction > threshold and exitPrediction > threshold

These should be reversed I think.
Reply
Ideas Scripts Chart
United States
United Kingdom
India
España
Italia
Brasil
Россия
Türkiye
日本
한국
Home Stock Screener Economic Calendar How It Works Chart Features House Rules Moderators For the WEB Widgets Stock Charting Library Priority Support Feature Request Blog & News FAQ Help & Wiki Twitter
Private Messages Chat Ideas Published Followers Following Priority Support Public Profile Profile Settings Billing Sign Out