murari

ANN Strategy Indicator 3.2 (Rebuilt By Murari)

650 3 73
Murari Redesigned
Remove from Favorite Scripts Add to Favorite Scripts
//@version=2
study("ANN Strategy Indicator 3.2 (Rebuilt By Murari)", overlay=false, precision=777)
threshold = input(title="Threshold", type=float, defval=0.001, step=0.001)
largeTimeframe = input(title="Large timeframe", type=resolution, defval='D')
smallTimeframe = input(title="Small timeframe", type=resolution, defval='60')

PineActivationFunctionLinear(v) => v
PineActivationFunctionTanh(v) => 
    (exp(v) - exp(-v))/(exp(v) + exp(-v))

ANN(input) =>
    l0_0 = PineActivationFunctionLinear(input)
    l0_1 = PineActivationFunctionLinear(input)
    l0_2 = PineActivationFunctionLinear(input)
    l0_3 = PineActivationFunctionLinear(input)
    l0_4 = PineActivationFunctionLinear(input)
    l0_5 = PineActivationFunctionLinear(input)
    l0_6 = PineActivationFunctionLinear(input)
    l0_7 = PineActivationFunctionLinear(input)
    l0_8 = PineActivationFunctionLinear(input)
    l0_9 = PineActivationFunctionLinear(input)
    l0_10 = PineActivationFunctionLinear(input)
    l0_11 = PineActivationFunctionLinear(input)
    l0_12 = PineActivationFunctionLinear(input)
    l0_13 = PineActivationFunctionLinear(input)
    l0_14 = PineActivationFunctionLinear(input)
 
    l1_0 = PineActivationFunctionTanh(l0_0*5.040340774 + l0_1*-1.3025994088 + l0_2*19.4225543981 + l0_3*1.1796960423 + l0_4*2.4299395823 + l0_5*3.159003445 + l0_6*4.6844527551 + l0_7*-6.1079267196 + l0_8*-2.4952869198 + l0_9*-4.0966081154 + l0_10*-2.2432843111 + l0_11*-0.6105764807 + l0_12*-0.0775684605 + l0_13*-0.7984753138 + l0_14*3.4495907342)
    l1_1 = PineActivationFunctionTanh(l0_0*5.9559031982 + l0_1*-3.1781960056 + l0_2*-1.6337491061 + l0_3*-4.3623166512 + l0_4*0.9061990402 + l0_5*-0.731285093 + l0_6*-6.2500232251 + l0_7*0.1356087758 + l0_8*-0.8570572885 + l0_9*-4.0161353298 + l0_10*1.5095552083 + l0_11*1.324789197 + l0_12*-0.1011973878 + l0_13*-2.3642090162 + l0_14*-0.7160862442)
    l1_2 = PineActivationFunctionTanh(l0_0*4.4350881378 + l0_1*-2.8956461034 + l0_2*1.4199762607 + l0_3*-0.6436844261 + l0_4*1.1124274281 + l0_5*-4.0976954985 + l0_6*2.9317456342 + l0_7*0.0798318393 + l0_8*-5.5718144311 + l0_9*-0.6623352208 +l0_10*3.2405203222 + l0_11*-10.6253384513 + l0_12*4.7132919253 + l0_13*-5.7378151597 + l0_14*0.3164836695)
    l1_3 = PineActivationFunctionTanh(l0_0*-6.1194605467 + l0_1*7.7935605604 + l0_2*-0.7587522153 + l0_3*9.8382495905 + l0_4*0.3274314734 + l0_5*1.8424796541 + l0_6*-1.2256355427 + l0_7*-1.5968600758 + l0_8*1.9937700922 + l0_9*5.0417809111 + l0_10*-1.9369944654 + l0_11*6.1013201778 + l0_12*1.5832910747 + l0_13*-2.148403244 + l0_14*1.5449437366)
    l1_4 = PineActivationFunctionTanh(l0_0*3.5700040028 + l0_1*-4.4755892733 + l0_2*0.1526702072 + l0_3*-0.3553664401 + l0_4*-2.3777962662 + l0_5*-1.8098849587 + l0_6*-3.5198449134 + l0_7*-0.4369370497 + l0_8*2.3350169623 + l0_9*1.9328960346 + l0_10*1.1824141812 + l0_11*3.0565148049 + l0_12*-9.3253401534 + l0_13*1.6778555498 + l0_14*-3.045794332)
    l1_5 = PineActivationFunctionTanh(l0_0*3.6784907623 + l0_1*1.1623683715 + l0_2*7.1366362145 + l0_3*-5.6756546585 + l0_4*12.7019884334 + l0_5*-1.2347823331 + l0_6*2.3656619827 + l0_7*-8.7191778213 + l0_8*-13.8089238753 + l0_9*5.4335943836 + l0_10*-8.1441181338 + l0_11*-10.5688113287 + l0_12*6.3964140758 + l0_13*-8.9714236223 + l0_14*-34.0255456929)
    l1_6 = PineActivationFunctionTanh(l0_0*-0.4344517548 + l0_1*-3.8262167437 + l0_2*-0.2051098003 + l0_3*0.6844201221 + l0_4*1.1615893422 + l0_5*-0.404465314 + l0_6*-0.1465747632 + l0_7*-0.006282458 + l0_8*0.1585655487 + l0_9*1.1994484991 + l0_10*-0.9879081404 + l0_11*-0.3564970612 + l0_12*1.5814717823 + l0_13*-0.9614804676 + l0_14*0.9204822346)
    l1_7 = PineActivationFunctionTanh(l0_0*-4.2700957175 + l0_1*9.4328591157 + l0_2*-4.3045548 + l0_3*5.061686