This is an implementation of an Artificial Neural Network (ANN) in pine. I made this as part of a bigger project and should be considered more as a proof of concept than a fully working indicator.

It was trained by a different program, using 3 years of bitcoin history. It's a 4 layer ANN that takes the percentual difference of the last few days as input. It was randomly generated (that's why the input is a bit funny :) ) and translated to pine.

It seems to be much better at trends and pump/dumps, because it keeps switching during sideways, so perhaps with a sideways indicator this could actually prove useful. In the chart above, I drew how you would trade with this indicator. Every red square             is a short, every green square             is a long.

The aqua plot line is the actual prediction. If this is above 0, the background is drawn green and the indicator is bullish . Otherwise, the background is drawn red and the indicator is bearish .

Any and all question can be asked by PM'ing me or emailing me at masterflappie@gmail.com
Remove from Favorite Scripts Add to Favorite Scripts
study("ANN")

getDiff(offset) =>
    yesterday=close[offset+1]
    today=close[offset]
    delta=today-yesterday
    percentage=delta/yesterday
 
PineActivationFunctionLinear(v) => v
 
PineActivationFunctionTanh(v) => (exp(v) - exp(-v))/(exp(v) + exp(-v))

l0_0 = PineActivationFunctionLinear(getDiff(0))
l0_1 = PineActivationFunctionLinear(getDiff(0))
l0_2 = PineActivationFunctionLinear(getDiff(0))
l0_3 = PineActivationFunctionLinear(getDiff(0))
l0_4 = PineActivationFunctionLinear(getDiff(0))
l0_5 = PineActivationFunctionLinear(getDiff(0))
l0_6 = PineActivationFunctionLinear(getDiff(0))
l0_7 = PineActivationFunctionLinear(getDiff(0))
l0_8 = PineActivationFunctionLinear(getDiff(0))
l0_9 = PineActivationFunctionLinear(getDiff(0))
l0_10 = PineActivationFunctionLinear(getDiff(0))
l0_11 = PineActivationFunctionLinear(getDiff(0))
l0_12 = PineActivationFunctionLinear(getDiff(0))
l0_13 = PineActivationFunctionLinear(getDiff(0))
l0_14 = PineActivationFunctionLinear(getDiff(0))
 
l1_0 = PineActivationFunctionTanh(l0_0*5.040340774 + l0_1*-1.3025994088 + l0_2*19.4225543981 + l0_3*1.1796960423 + l0_4*2.4299395823 + l0_5*3.159003445 + l0_6*4.6844527551 + l0_7*-6.1079267196 + l0_8*-2.4952869198 + l0_9*-4.0966081154 + l0_10*-2.2432843111 + l0_11*-0.6105764807 + l0_12*-0.0775684605 + l0_13*-0.7984753138 + l0_14*3.4495907342)
l1_1 = PineActivationFunctionTanh(l0_0*5.9559031982 + l0_1*-3.1781960056 + l0_2*-1.6337491061 + l0_3*-4.3623166512 + l0_4*0.9061990402 + l0_5*-0.731285093 + l0_6*-6.2500232251 + l0_7*0.1356087758 + l0_8*-0.8570572885 + l0_9*-4.0161353298 + l0_10*1.5095552083 + l0_11*1.324789197 + l0_12*-0.1011973878 + l0_13*-2.3642090162 + l0_14*-0.7160862442)
l1_2 = PineActivationFunctionTanh(l0_0*4.4350881378 + l0_1*-2.8956461034 + l0_2*1.4199762607 + l0_3*-0.6436844261 + l0_4*1.1124274281 + l0_5*-4.0976954985 + l0_6*2.9317456342 + l0_7*0.0798318393 + l0_8*-5.5718144311 + l0_9*-0.6623352208 +l0_10*3.2405203222 + l0_11*-10.6253384513 + l0_12*4.7132919253 + l0_13*-5.7378151597 + l0_14*0.3164836695)
l1_3 = PineActivationFunctionTanh(l0_0*-6.1194605467 + l0_1*7.7935605604 + l0_2*-0.7587522153 + l0_3*9.8382495905 + l0_4*0.3274314734 + l0_5*1.8424796541 + l0_6*-1.2256355427 + l0_7*-1.5968600758 + l0_8*1.9937700922 + l0_9*5.0417809111 + l0_10*-1.9369944654 + l0_11*6.1013201778 + l0_12*1.5832910747 + l0_13*-2.148403244 + l0_14*1.5449437366)
l1_4 = PineActivationFunctionTanh(l0_0*3.5700040028 + l0_1*-4.4755892733 + l0_2*0.1526702072 + l0_3*-0.3553664401 + l0_4*-2.3777962662 + l0_5*-1.8098849587 + l0_6*-3.5198449134 + l0_7*-0.4369370497 + l0_8*2.3350169623 + l0_9*1.9328960346 + l0_10*1.1824141812 + l0_11*3.0565148049 + l0_12*-9.3253401534 + l0_13*1.6778555498 + l0_14*-3.045794332)
l1_5 = PineActivationFunctionTanh(l0_0*3.6784907623 + l0_1*1.1623683715 + l0_2*7.1366362145 + l0_3*-5.6756546585 + l0_4*12.7019884334 + l0_5*-1.2347823331 + l0_6*2.3656619827 + l0_7*-8.7191778213 + l0_8*-13.8089238753 + l0_9*5.4335943836 + l0_10*-8.1441181338 + l0_11*-10.5688113287 + l0_12*6.3964140758 + l0_13*-8.9714236223 + l0_14*-34.0255456929)
l1_6 = PineActivationFunctionTanh(l0_0*-0.4344517548 + l0_1*-3.8262167437 + l0_2*-0.2051098003 + l0_3*0.6844201221 + l0_4*1.1615893422 + l0_5*-0.404465314 + l0_6*-0.1465747632 + l0_7*-0.006282458 + l0_8*0.1585655487 + l0_9*1.1994484991 + l0_10*-0.9879081404 + l0_11*-0.3564970612 + l0_12*1.5814717823 + l0_13*-0.9614804676 + l0_14*0.9204822346)
l1_7 = PineActivationFunctionTanh(l0_0*-4.2700957175 + l0_1*9.4328591157 + l0_2*-4.3045548 + l0_3*5.0616868842 + l0_4*3.3388781058 + l0_5*-2.1885073225 + l0_6*-6.506301518 + l0_7*3.8429000108 + l0_8*-1.6872237349 + l0_9*2.4107095799 + l0_10*-3.0873985314 + l0_11*-2.8358325447 + l0_12*2.4044366491 + l0_13*0.636779082 + l0_14*-13.2173215035)
l1_8 = PineActivationFunctionTanh(l0_0*-8.3224697492 + l0_1*-9.4825530183 + l0_2*3.5294389835 + l0_3*0.1538618049 + l0_4*-13.5388631898 + l0_5*-0.1187936017 + l0_6*-8.4582741139 + l0_7*5.1566299292 + l0_8*10.345519938 + l0_9*2.9211759333 + l0_10*-5.0471804233 + l0_11*4.9255989983 + l0_12*-9.9626142544 + l0_13*23.0043143258 + l0_14*20.9391809343)
l1_9 = PineActivationFunctionTanh(l0_0*-0.9120518654 + l0_1*0.4991807488 + l0_2*-1.877244586 + l0_3*3.1416466525 + l0_4*1.063709676 + l0_5*0.5210126835 + l0_6*-4.9755780108 + l0_7*2.0336532347 + l0_8*-1.1793121093 + l0_9*-0.730664855 + l0_10*-2.3515987428 + l0_11*-0.1916546514 + l0_12*-2.2530340504 + l0_13*-0.2331829119 + l0_14*0.7216218149)
l1_10 = PineActivationFunctionTanh(l0_0*-5.2139618683 + l0_1*1.0663790028 + l0_2*1.8340834959 + l0_3*1.6248173447 + l0_4*-0.7663740145 + l0_5*0.1062788171 + l0_6*2.5288021501 + l0_7*-3.4066549066 + l0_8*-4.9497988755 + l0_9*-2.3060668143 + l0_10*-1.3962486274 + l0_11*0.6185583427 + l0_12*0.2625299576 + l0_13*2.0270246444 + l0_14*0.6372015811)
l1_11 = PineActivationFunctionTanh(l0_0*0.2020072665 + l0_1*0.3885852709 + l0_2*-0.1830248843 + l0_3*-1.2408598444 + l0_4*-0.6365798088 + l0_5*1.8736534268 + l0_6*0.656206442 + l0_7*-0.2987482678 + l0_8*-0.2017485963 + l0_9*-1.0604095303 + l0_10*0.239793356 + l0_11*-0.3614172938 + l0_12*0.2614678044 + l0_13*1.0083551762 + l0_14*-0.5473833797)
l1_12 = PineActivationFunctionTanh(l0_0*-0.4367517149 + l0_1*-10.0601304934 + l0_2*1.9240604838 + l0_3*-1.3192184047 + l0_4*-0.4564760159 + l0_5*-0.2965270368 + l0_6*-1.1407423613 + l0_7*2.0949647291 + l0_8*-5.8212599297 + l0_9*-1.3393321939 + l0_10*7.6624548265 + l0_11*1.1309391851 + l0_12*-0.141798054 + l0_13*5.1416736187 + l0_14*-1.8142503125)
l1_13 = PineActivationFunctionTanh(l0_0*1.103948336 + l0_1*-1.4592033032 + l0_2*0.6146278432 + l0_3*0.5040966421 + l0_4*-2.4276090772 + l0_5*-0.0432902426 + l0_6*-0.0044259999 + l0_7*-0.5961347308 + l0_8*0.3821026107 + l0_9*0.6169102373 +l0_10*-0.1469847611 + l0_11*-0.0717167683 + l0_12*-0.0352403695 + l0_13*1.2481310788 + l0_14*0.1339628411)
l1_14 = PineActivationFunctionTanh(l0_0*-9.8049980534 + l0_1*13.5481068519 + l0_2*-17.1362809025 + l0_3*0.7142100864 + l0_4*4.4759163422 + l0_5*4.5716161777 + l0_6*1.4290884628 + l0_7*8.3952862712 + l0_8*-7.1613700432 + l0_9*-3.3249489518+ l0_10*-0.7789587912 + l0_11*-1.7987628873 + l0_12*13.364752545 + l0_13*5.3947219678 + l0_14*12.5267547127)
l1_15 = PineActivationFunctionTanh(l0_0*0.9869461803 + l0_1*1.9473351905 + l0_2*2.032925759 + l0_3*7.4092080633 + l0_4*-1.9257741399 + l0_5*1.8153585328 + l0_6*1.1427866392 + l0_7*-0.3723167449 + l0_8*5.0009927384 + l0_9*-0.2275103411 + l0_10*2.8823012914 + l0_11*-3.0633141934 + l0_12*-2.785334815 + l0_13*2.727981E-4 + l0_14*-0.1253009512)
l1_16 = PineActivationFunctionTanh(l0_0*4.9418118585 + l0_1*-2.7538199876 + l0_2*-16.9887588104 + l0_3*8.8734475297 + l0_4*-16.3022734814 + l0_5*-4.562496601 + l0_6*-1.2944373699 + l0_7*-9.6022946986 + l0_8*-1.018393866 + l0_9*-11.4094515429 + l0_10*24.8483091382 + l0_11*-3.0031522277 + l0_12*0.1513114555 + l0_13*-6.7170487021 + l0_14*-14.7759227576)
l1_17 = PineActivationFunctionTanh(l0_0*5.5931454656 + l0_1*2.22272078 + l0_2*2.603416897 + l0_3*1.2661196599 + l0_4*-2.842826446 + l0_5*-7.9386099121 + l0_6*2.8278849111 + l0_7*-1.2289445238 + l0_8*4.571484248 + l0_9*0.9447425595 + l0_10*4.2890688351 + l0_11*-3.3228258483 + l0_12*4.8866215526 + l0_13*1.0693412194 + l0_14*-1.963203112)
l1_18 = PineActivationFunctionTanh(l0_0*0.2705520264 + l0_1*0.4002328199 + l0_2*0.1592515845 + l0_3*0.371893552 + l0_4*-1.6639467871 + l0_5*2.2887318884 + l0_6*-0.148633664 + l0_7*-0.6517792263 + l0_8*-0.0993032992 + l0_9*-0.964940376 + l0_10*0.1286342935 + l0_11*0.4869943595 + l0_12*1.4498648166 + l0_13*-0.3257333384 + l0_14*-1.3496419812)
l1_19 = PineActivationFunctionTanh(l0_0*-1.3223200798 + l0_1*-2.2505204324 + l0_2*0.8142804525 + l0_3*-0.848348177 + l0_4*0.7208860589 + l0_5*1.2033423756 + l0_6*-0.1403005786 + l0_7*0.2995941644 + l0_8*-1.1440473062 + l0_9*1.067752916 + l0_10*-1.2990534679 + l0_11*1.2588583869 + l0_12*0.7670409455 + l0_13*2.7895972983 + l0_14*-0.5376152512)
l1_20 = PineActivationFunctionTanh(l0_0*0.7382351572 + l0_1*-0.8778865631 + l0_2*1.0950766363 + l0_3*0.7312146997 + l0_4*2.844781386 + l0_5*2.4526730903 + l0_6*-1.9175165077 + l0_7*-0.7443755288 + l0_8*-3.1591419438 + l0_9*0.8441602697 + l0_10*1.1979484448 + l0_11*2.138098544 + l0_12*0.9274159536 + l0_13*-2.1573448803 + l0_14*-3.7698356464)
l1_21 = PineActivationFunctionTanh(l0_0*5.187120117 + l0_1*-7.7525670576 + l0_2*1.9008346975 + l0_3*-1.2031603996 + l0_4*5.917669142 + l0_5*-3.1878682719 + l0_6*1.0311747828 + l0_7*-2.7529484612 + l0_8*-1.1165884578 + l0_9*2.5524942323 + l0_10*-0.38623241 + l0_11*3.7961317445 + l0_12*-6.128820883 + l0_13*-2.1470707709 + l0_14*2.0173792965)
l1_22 = PineActivationFunctionTanh(l0_0*-6.0241676562 + l0_1*0.7474455584 + l0_2*1.7435724844 + l0_3*0.8619835076 + l0_4*-0.1138406797 + l0_5*6.5979359352 + l0_6*1.6554154348 + l0_7*-3.7969458806 + l0_8*1.1139097376 + l0_9*-1.9588417 + l0_10*3.5123392221 + l0_11*9.4443103128 + l0_12*-7.4779291395 + l0_13*3.6975940671 + l0_14*8.5134262747)
l1_23 = PineActivationFunctionTanh(l0_0*-7.5486576471 + l0_1*-0.0281420865 + l0_2*-3.8586839454 + l0_3*-0.5648792233 + l0_4*-7.3927282026 + l0_5*-0.3857538046 + l0_6*-2.9779885698 + l0_7*4.0482279965 + l0_8*-1.1522499578 + l0_9*-4.1562500212 + l0_10*0.7813134307 + l0_11*-1.7582667612 + l0_12*1.7071109988 + l0_13*6.9270873208 + l0_14*-4.5871357362)
l1_24 = PineActivationFunctionTanh(l0_0*-5.3603442228 + l0_1*-9.5350611629 + l0_2*1.6749984422 + l0_3*-0.6511065892 + l0_4*-0.8424823239 + l0_5*1.9946675213 + l0_6*-1.1264361638 + l0_7*0.3228676616 + l0_8*5.3562230396 + l0_9*-1.6678168952+ l0_10*1.2612580068 + l0_11*-3.5362671399 + l0_12*-9.3895191366 + l0_13*2.0169228673 + l0_14*-3.3813191557)
l1_25 = PineActivationFunctionTanh(l0_0*1.1362866429 + l0_1*-1.8960071702 + l0_2*5.7047307243 + l0_3*-1.6049785053 + l0_4*-4.8353898931 + l0_5*-1.4865381145 + l0_6*-0.2846893475 + l0_7*2.2322095997 + l0_8*2.0930488668 + l0_9*1.7141411002 + l0_10*-3.4106032176 + l0_11*3.0593289612 + l0_12*-5.0894813904 + l0_13*-0.5316299133 + l0_14*0.4705265416)
l1_26 = PineActivationFunctionTanh(l0_0*-0.9401400975 + l0_1*-0.9136086957 + l0_2*-3.3808688582 + l0_3*4.7200776773 + l0_4*3.686296919 + l0_5*14.2133723935 + l0_6*1.5652940954 + l0_7*-0.2921139433 + l0_8*1.0244504511 + l0_9*-7.6918299134 + l0_10*-0.594936135 + l0_11*-1.4559914156 + l0_12*2.8056435224 + l0_13*2.6103905733 + l0_14*2.3412348872)
l1_27 = PineActivationFunctionTanh(l0_0*1.1573980186 + l0_1*2.9593661909 + l0_2*0.4512594325 + l0_3*-0.9357210858 + l0_4*-1.2445804495 + l0_5*4.2716471631 + l0_6*1.5167912375 + l0_7*1.5026853293 + l0_8*1.3574772038 + l0_9*-1.9754386842 + l0_10*6.727671436 + l0_11*8.0145772889 + l0_12*7.3108970663 + l0_13*-2.5005627841 + l0_14*8.9604502277)
l1_28 = PineActivationFunctionTanh(l0_0*6.3576350212 + l0_1*-2.9731672725 + l0_2*-2.7763558082 + l0_3*-3.7902984555 + l0_4*-1.0065574585 + l0_5*-0.7011836061 + l0_6*-1.0298068578 + l0_7*1.201007784 + l0_8*-0.7835862254 + l0_9*-3.9863597435 + l0_10*6.7851825502 + l0_11*1.1120256721 + l0_12*-2.263287351 + l0_13*1.8314374104 + l0_14*-2.279102097)
l1_29 = PineActivationFunctionTanh(l0_0*-7.8741911036 + l0_1*-5.3370618518 + l0_2*11.9153868964 + l0_3*-4.1237170553 + l0_4*2.9491152758 + l0_5*1.0317132502 + l0_6*2.2992199883 + l0_7*-2.0250502364 + l0_8*-11.0785995839 + l0_9*-6.3615588554 + l0_10*-1.1687644976 + l0_11*6.3323478015 + l0_12*6.0195076962 + l0_13*-2.8972208702 + l0_14*3.6107747183)
 
l2_0 = PineActivationFunctionTanh(l1_0*-0.590546797 + l1_1*0.6608304658 + l1_2*-0.3358268839 + l1_3*-0.748530283 + l1_4*-0.333460383 + l1_5*-0.3409307681 + l1_6*0.1916558198 + l1_7*-0.1200399453 + l1_8*-0.5166151854 + l1_9*-0.8537164676 +l1_10*-0.0214448647 + l1_11*-0.553290271 + l1_12*-1.2333302892 + l1_13*-0.8321813811 + l1_14*-0.4527761741 + l1_15*0.9012545631 + l1_16*0.415853215 + l1_17*0.1270548319 + l1_18*0.2000460279 + l1_19*-0.1741942671 + l1_20*0.419830522 + l1_21*-0.059839291 + l1_22*-0.3383001769 + l1_23*0.1617814073 + l1_24*0.3071848006 + l1_25*-0.3191182045 + l1_26*-0.4981831822 + l1_27*-1.467478375 + l1_28*-0.1676432563 + l1_29*1.2574849126)
l2_1 = PineActivationFunctionTanh(l1_0*-0.5514235841 + l1_1*0.4759190049 + l1_2*0.2103576983 + l1_3*-0.4754377924 + l1_4*-0.2362941295 + l1_5*0.1155082119 + l1_6*0.7424215794 + l1_7*-0.3674198672 + l1_8*0.8401574461 + l1_9*0.6096563193 + l1_10*0.7437935674 + l1_11*-0.4898638101 + l1_12*-0.4168668092 + l1_13*-0.0365111095 + l1_14*-0.342675224 + l1_15*0.1870268765 + l1_16*-0.5843050987 + l1_17*-0.4596547471 + l1_18*0.452188522 + l1_19*-0.6737126684 + l1_20*0.6876072741 + l1_21*-0.8067776704 + l1_22*0.7592979467 + l1_23*-0.0768239468 + l1_24*0.370536097 + l1_25*-0.4363884671 + l1_26*-0.419285676 + l1_27*0.4380251141 + l1_28*0.0822528948 + l1_29*-0.2333910809)
l2_2 = PineActivationFunctionTanh(l1_0*-0.3306539521 + l1_1*-0.9382247194 + l1_2*0.0746711276 + l1_3*-0.3383838985 + l1_4*-0.0683232217 + l1_5*-0.2112358049 + l1_6*-0.9079234054 + l1_7*0.4898595603 + l1_8*-0.2039825863 + l1_9*1.0870698641+ l1_10*-1.1752901237 + l1_11*1.1406403923 + l1_12*-0.6779626786 + l1_13*0.4281048906 + l1_14*-0.6327670055 + l1_15*-0.1477678844 + l1_16*0.2693637584 + l1_17*0.7250738509 + l1_18*0.7905904504 + l1_19*-1.6417250883 + l1_20*-0.2108095534 +l1_21*-0.2698557472 + l1_22*-0.2433656685 + l1_23*-0.6289943273 + l1_24*0.436428207 + l1_25*-0.8243825184 + l1_26*-0.8583496686 + l1_27*0.0983131026 + l1_28*-0.4107462518 + l1_29*0.5641683087)
l2_3 = PineActivationFunctionTanh(l1_0*1.7036869992 + l1_1*-0.6683507666 + l1_2*0.2589197112 + l1_3*0.032841148 + l1_4*-0.4454796342 + l1_5*-0.6196149423 + l1_6*-0.1073622976 + l1_7*-0.1926393101 + l1_8*1.5280232458 + l1_9*-0.6136527036 +l1_10*-1.2722934357 + l1_11*0.2888655811 + l1_12*-1.4338638512 + l1_13*-1.1903556863 + l1_14*-1.7659663905 + l1_15*0.3703086867 + l1_16*1.0409140889 + l1_17*0.0167382209 + l1_18*0.6045646461 + l1_19*4.2388788116 + l1_20*1.4399738234 + l1_21*0.3308571935 + l1_22*1.4501137667 + l1_23*0.0426123724 + l1_24*-0.708479795 + l1_25*-1.2100800732 + l1_26*-0.5536278651 + l1_27*1.3547250573 + l1_28*1.2906250286 + l1_29*0.0596007114)
l2_4 = PineActivationFunctionTanh(l1_0*-0.462165126 + l1_1*-1.0996742176 + l1_2*1.0928262999 + l1_3*1.806407067 + l1_4*0.9289147669 + l1_5*0.8069022793 + l1_6*0.2374237802 + l1_7*-2.7143979019 + l1_8*-2.7779203877 + l1_9*0.214383903 + l1_10*-1.3111536623 + l1_11*-2.3148813568 + l1_12*-2.4755355804 + l1_13*-0.6819733236 + l1_14*0.4425615226 + l1_15*-0.1298218043 + l1_16*-1.1744832824 + l1_17*-0.395194848 + l1_18*-0.2803397703 + l1_19*-0.4505071197 + l1_20*-0.8934956598 + l1_21*3.3232916348 + l1_22*-1.7359534851 + l1_23*3.8540421743 + l1_24*1.4424032523 + l1_25*0.2639823693 + l1_26*0.3597053634 + l1_27*-1.0470693728 + l1_28*1.4133480357 + l1_29*0.6248098695)
l2_5 = PineActivationFunctionTanh(l1_0*0.2215807411 + l1_1*-0.5628295071 + l1_2*-0.8795982905 + l1_3*0.9101585104 + l1_4*-1.0176831976 + l1_5*-0.0728884401 + l1_6*0.6676331658 + l1_7*-0.7342174108 + l1_8*9.4428E-4 + l1_9*0.6439774272 + l1_10*-0.0345236026 + l1_11*0.5830977027 + l1_12*-0.4058921837 + l1_13*-0.3991888077 + l1_14*-1.0090426973 + l1_15*-0.9324780698 + l1_16*-0.0888749165 + l1_17*0.2466351736 + l1_18*0.4993304601 + l1_19*-1.115408696 + l1_20*0.9914246705 + l1_21*0.9687743445 + l1_22*0.1117130875 + l1_23*0.7825109733 + l1_24*0.2217023612 + l1_25*0.3081256411 + l1_26*-0.1778007966 + l1_27*-0.3333287743 + l1_28*1.0156352461 + l1_29*-0.1456257813)
l2_6 = PineActivationFunctionTanh(l1_0*-0.5461783383 + l1_1*0.3246015999 + l1_2*0.1450605434 + l1_3*-1.3179944349 + l1_4*-1.5481775261 + l1_5*-0.679685633 + l1_6*-0.9462335139 + l1_7*-0.6462399371 + l1_8*0.0991658683 + l1_9*0.1612892194 +l1_10*-1.037660602 + l1_11*-0.1044778824 + l1_12*0.8309203243 + l1_13*0.7714766458 + l1_14*0.2566767663 + l1_15*0.8649416329 + l1_16*-0.5847461285 + l1_17*-0.6393969272 + l1_18*0.8014049359 + l1_19*0.2279568228 + l1_20*1.0565217821 + l1_21*0.134738029 + l1_22*0.3420395576 + l1_23*-0.2417397219 + l1_24*0.3083072038 + l1_25*0.6761739059 + l1_26*-0.4653817053 + l1_27*-1.0634057566 + l1_28*-0.5658892281 + l1_29*-0.6947283681)
l2_7 = PineActivationFunctionTanh(l1_0*-0.5450410944 + l1_1*0.3912849372 + l1_2*-0.4118641117 + l1_3*0.7124695074 + l1_4*-0.7510266122 + l1_5*1.4065673913 + l1_6*0.9870731545 + l1_7*-0.2609363107 + l1_8*-0.3583639958 + l1_9*0.5436375706 +l1_10*0.4572450099 + l1_11*-0.4651538878 + l1_12*-0.2180218212 + l1_13*0.5241262959 + l1_14*-0.8529323253 + l1_15*-0.4200378937 + l1_16*0.4997885721 + l1_17*-1.1121528189 + l1_18*0.5992411048 + l1_19*-1.0263270781 + l1_20*-1.725160642 + l1_21*-0.2653995722 + l1_22*0.6996703032 + l1_23*0.348549086 + l1_24*0.6522482482 + l1_25*-0.7931928436 + l1_26*-0.5107994359 + l1_27*0.0509642698 + l1_28*0.8711187423 + l1_29*0.8999449627)
l2_8 = PineActivationFunctionTanh(l1_0*-0.7111081522 + l1_1*0.4296245062 + l1_2*-2.0720732038 + l1_3*-0.4071818684 + l1_4*1.0632721681 + l1_5*0.8463224325 + l1_6*-0.6083948423 + l1_7*1.1827669608 + l1_8*-0.9572307844 + l1_9*-0.9080517673 + l1_10*-0.0479029057 + l1_11*-1.1452853213 + l1_12*0.2884352688 + l1_13*0.1767851586 + l1_14*-1.089314461 + l1_15*1.2991763966 + l1_16*1.6236630806 + l1_17*-0.7720263697 + l1_18*-0.5011541755 + l1_19*-2.3919413568 + l1_20*0.0084018338 + l1_21*0.9975216139 + l1_22*0.4193541029 + l1_23*1.4623834571 + l1_24*-0.6253069691 + l1_25*0.6119677341 + l1_26*0.5423948388 + l1_27*1.0022450377 + l1_28*-1.2392984069 + l1_29*1.5021529822)
 
l3_0 = PineActivationFunctionTanh(l2_0*0.3385061186 + l2_1*0.6218531956 + l2_2*-0.7790340983 + l2_3*0.1413078332 + l2_4*0.1857010624 + l2_5*-0.1769456351 + l2_6*-0.3242337911 + l2_7*-0.503944883 + l2_8*0.1540568869)
 
hline(0, title="base line")
bgcolor(l3_0 > 0 ? green : red, transp=20)
plot(l3_0, color=aqua, title="prediction")
does the indis repaint ??
Reply
Nicee....
Reply
Thank you very much. You're indeed a genius!
Reply
how to apply this indicator to chart
+3 Reply
amazing thanks
Reply
You're a genius! Thank you for all your support.
Reply
Excellent work, fascinating really.
Reply
Strategy version available!
ANN Strategy
+4 Reply
@sirolf2009, hey i'm kind of new to pine script and I was looking at the source code. I noticed that it really comes down to l3_0 compared to the threshold. I see that there is a default value of 0.0014 with a step of 0.0001. Where does 0.0014 come from? What are the dependencies and when would we step up or down? Thanks, I really appreciate any help!
Reply
thank you, it will help
+1 Reply
United States
United Kingdom
India
Deutschland
España
France
Việt Nam
Italia
Polska
Brasil
Россия
Türkiye
Indonesia
Malaysia
日本
한국
简体
繁體
Home Stock Screener Forex Signal Finder Cryptocurrency Signal Finder Economic Calendar How It Works Chart Features House Rules Moderators Website & Broker Solutions Widgets Stock Charting Library Feature Request Blog & News FAQ Help & Wiki Twitter
Profile Profile Settings Account and Billing Support Priority Support Report Issue Ideas Published Followers Following Private Messages Chat Sign Out