OPEN-SOURCE SCRIPT
Мой скрипт

//version=4
study("BDBTW", overlay=true)
jawLength = input(13, minval=1, title="Jaw Length")
teethLength = input(8, minval=1, title="Teeth Length")
lipsLength = input(5, minval=1, title="Lips Length")
jawOffset = input(8, title="Jaw Offset")
teethOffset = input(5, title="Teeth Offset")
lipsOffset = input(3, title="Lips Offset")
n = input(title="Periods Fractal", defval=2, minval=2, type=input.integer)
offsetFractal = input(100, title = "Offset Fractal")
offsetBDBTW = input(200, title = "Offset BDBTW")
upFractal = ( (high[n+2] < high[n]) and (high[n+1] < high[n]) and (high[n-1] < high[n]) and (high[n-2] < high[n]))
or ( (high[n+3] < high[n]) and (high[n+2] < high[n]) and (high[n+1] == high[n]) and (high[n-1] < high[n]) and (high[n-2] < high[n]))
or ( (high[n+4] < high[n]) and (high[n+3] < high[n]) and (high[n+2] == high[n]) and (high[n+1] <= high[n]) and (high[n-1] < high[n]) and (high[n-2] < high[n]))
or ( (high[n+5] < high[n]) and (high[n+4] < high[n]) and (high[n+3] == high[n]) and (high[n+2] == high[n]) and (high[n+1] <= high[n]) and (high[n-1] < high[n]) and (high[n-2] < high[n]))
or ((high[n+6] < high[n]) and (high[n+5] < high[n]) and (high[n+4] == high[n]) and (high[n+3] <= high[n]) and (high[n+2] == high[n]) and (high[n+1] <= high[n]) and (high[n-1] < high[n]) and (high[n-2] < high[n]))
dnFractal = ( (low[n+2] > low[n]) and (low[n+1] > low[n]) and (low[n-1] > low[n]) and (low[n-2] > low[n]))
or ( (low[n+3] > low[n]) and (low[n+2] > low[n]) and (low[n+1] == low[n]) and (low[n-1] > low[n]) and (low[n-2] > low[n]))
or ( (low[n+4] > low[n]) and (low[n+3] > low[n]) and (low[n+2] == low[n]) and (low[n+1] >= low[n]) and (low[n-1] > low[n]) and (low[n-2] > low[n]))
or ( (low[n+5] > low[n]) and (low[n+4] > low[n]) and (low[n+3] == low[n]) and (low[n+2] == low[n]) and (low[n+1] >= low[n]) and (low[n-1] > low[n]) and (low[n-2] > low[n]))
or ((low[n+6] > low[n]) and (low[n+5] > low[n]) and (low[n+4] == low[n]) and (low[n+3] >= low[n]) and (low[n+2] == low[n]) and (low[n+1] >= low[n]) and (low[n-1] > low[n]) and (low[n-2] > low[n]))
smma(src, len) =>
s = 0.0
s := na(s[1]) ? sma(src, len) : (s[1]*(len-1)+src)/len
r_hl=roc((high-low)/volume,1)
r_v=roc(volume,1)
sq_f=(r_hl < 0) and (r_v > 0)
jaw = smma(hl2, jawLength)
teeth = smma(hl2, teethLength)
lips = smma(hl2, lipsLength)
BDBup = high < jaw[jawOffset] and high < teeth[teethOffset] and high < lips[lipsOffset] and low < low[1] and close > hl2
BDBdown = low > jaw[jawOffset] and low > teeth[teethOffset] and low > lips[lipsOffset] and high > high[1] and close < hl2
plot(jaw, title = "Williams Alligator", offset = jawOffset, color=#3BB3E4)
plot(teeth, title = "Williams Alligator", offset = teethOffset, color=#FF006E)
plot(lips, title = "Williams Alligator", offset = lipsOffset, color=#36C711)
plotshape(dnFractal ? low[n] - offsetFractal * syminfo.mintick : na, title = "Fractals", style=shape.triangledown, location=location.belowbar, offset=-n, size = size.auto, color= color.maroon, transp=0)
plotshape(upFractal ? high[n] + offsetFractal * syminfo.mintick : na, title = "Fractals", style=shape.triangleup, location=location.abovebar, offset=-n, size = size.auto, color=color.olive, transp=0)
plotshape(BDBup ? high + offsetBDBTW * syminfo.mintick : na, title = "BDBTW buy", style=shape.circle, location=location.abovebar, color=color.green, size=size.auto, editable=true)
plotshape(BDBdown ? low - offsetBDBTW * syminfo.mintick : na, title = "BDBTW sell", style=shape.circle, location=location.belowbar, color=color.red, size=size.auto, editable=true)
ao = sma(hl2,5) - sma(hl2,34)
cao = change(ao)
barcolor(sq_f ? color.blue : cao <= 0 ? color.red : color.green, title = "Williams Squat Bars")
study("BDBTW", overlay=true)
jawLength = input(13, minval=1, title="Jaw Length")
teethLength = input(8, minval=1, title="Teeth Length")
lipsLength = input(5, minval=1, title="Lips Length")
jawOffset = input(8, title="Jaw Offset")
teethOffset = input(5, title="Teeth Offset")
lipsOffset = input(3, title="Lips Offset")
n = input(title="Periods Fractal", defval=2, minval=2, type=input.integer)
offsetFractal = input(100, title = "Offset Fractal")
offsetBDBTW = input(200, title = "Offset BDBTW")
upFractal = ( (high[n+2] < high[n]) and (high[n+1] < high[n]) and (high[n-1] < high[n]) and (high[n-2] < high[n]))
or ( (high[n+3] < high[n]) and (high[n+2] < high[n]) and (high[n+1] == high[n]) and (high[n-1] < high[n]) and (high[n-2] < high[n]))
or ( (high[n+4] < high[n]) and (high[n+3] < high[n]) and (high[n+2] == high[n]) and (high[n+1] <= high[n]) and (high[n-1] < high[n]) and (high[n-2] < high[n]))
or ( (high[n+5] < high[n]) and (high[n+4] < high[n]) and (high[n+3] == high[n]) and (high[n+2] == high[n]) and (high[n+1] <= high[n]) and (high[n-1] < high[n]) and (high[n-2] < high[n]))
or ((high[n+6] < high[n]) and (high[n+5] < high[n]) and (high[n+4] == high[n]) and (high[n+3] <= high[n]) and (high[n+2] == high[n]) and (high[n+1] <= high[n]) and (high[n-1] < high[n]) and (high[n-2] < high[n]))
dnFractal = ( (low[n+2] > low[n]) and (low[n+1] > low[n]) and (low[n-1] > low[n]) and (low[n-2] > low[n]))
or ( (low[n+3] > low[n]) and (low[n+2] > low[n]) and (low[n+1] == low[n]) and (low[n-1] > low[n]) and (low[n-2] > low[n]))
or ( (low[n+4] > low[n]) and (low[n+3] > low[n]) and (low[n+2] == low[n]) and (low[n+1] >= low[n]) and (low[n-1] > low[n]) and (low[n-2] > low[n]))
or ( (low[n+5] > low[n]) and (low[n+4] > low[n]) and (low[n+3] == low[n]) and (low[n+2] == low[n]) and (low[n+1] >= low[n]) and (low[n-1] > low[n]) and (low[n-2] > low[n]))
or ((low[n+6] > low[n]) and (low[n+5] > low[n]) and (low[n+4] == low[n]) and (low[n+3] >= low[n]) and (low[n+2] == low[n]) and (low[n+1] >= low[n]) and (low[n-1] > low[n]) and (low[n-2] > low[n]))
smma(src, len) =>
s = 0.0
s := na(s[1]) ? sma(src, len) : (s[1]*(len-1)+src)/len
r_hl=roc((high-low)/volume,1)
r_v=roc(volume,1)
sq_f=(r_hl < 0) and (r_v > 0)
jaw = smma(hl2, jawLength)
teeth = smma(hl2, teethLength)
lips = smma(hl2, lipsLength)
BDBup = high < jaw[jawOffset] and high < teeth[teethOffset] and high < lips[lipsOffset] and low < low[1] and close > hl2
BDBdown = low > jaw[jawOffset] and low > teeth[teethOffset] and low > lips[lipsOffset] and high > high[1] and close < hl2
plot(jaw, title = "Williams Alligator", offset = jawOffset, color=#3BB3E4)
plot(teeth, title = "Williams Alligator", offset = teethOffset, color=#FF006E)
plot(lips, title = "Williams Alligator", offset = lipsOffset, color=#36C711)
plotshape(dnFractal ? low[n] - offsetFractal * syminfo.mintick : na, title = "Fractals", style=shape.triangledown, location=location.belowbar, offset=-n, size = size.auto, color= color.maroon, transp=0)
plotshape(upFractal ? high[n] + offsetFractal * syminfo.mintick : na, title = "Fractals", style=shape.triangleup, location=location.abovebar, offset=-n, size = size.auto, color=color.olive, transp=0)
plotshape(BDBup ? high + offsetBDBTW * syminfo.mintick : na, title = "BDBTW buy", style=shape.circle, location=location.abovebar, color=color.green, size=size.auto, editable=true)
plotshape(BDBdown ? low - offsetBDBTW * syminfo.mintick : na, title = "BDBTW sell", style=shape.circle, location=location.belowbar, color=color.red, size=size.auto, editable=true)
ao = sma(hl2,5) - sma(hl2,34)
cao = change(ao)
barcolor(sq_f ? color.blue : cao <= 0 ? color.red : color.green, title = "Williams Squat Bars")
Open-source script
In true TradingView spirit, the creator of this script has made it open-source, so that traders can review and verify its functionality. Kudos to the author! While you can use it for free, remember that republishing the code is subject to our House Rules.
Disclaimer
The information and publications are not meant to be, and do not constitute, financial, investment, trading, or other types of advice or recommendations supplied or endorsed by TradingView. Read more in the Terms of Use.
Open-source script
In true TradingView spirit, the creator of this script has made it open-source, so that traders can review and verify its functionality. Kudos to the author! While you can use it for free, remember that republishing the code is subject to our House Rules.
Disclaimer
The information and publications are not meant to be, and do not constitute, financial, investment, trading, or other types of advice or recommendations supplied or endorsed by TradingView. Read more in the Terms of Use.