import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import yfinance as yf
# Stock data download (for example, Apple stock)
stock_symbol = 'AAPL'
data = yf.download(stock_symbol, start='2020-01-01', end='2025-01-01')
# Calculate Short and Long Moving Averages
short_window = 40
long_window = 100
data['Short_MA'] = data['Close'].rolling(window=short_window, min_periods=1).mean()
data['Long_MA'] = data['Close'].rolling(window=long_window, min_periods=1).mean()
# Generate signals
data['Signal'] = 0
data['Signal'][short_window:] = np.where(data['Short_MA'][short_window:] > data['Long_MA'][short_window:], 1, 0)
data['Position'] = data['Signal'].diff()
# Plotting the data
plt.figure(figsize=(12,6))
plt.plot(data['Close'], label='Close Price')
plt.plot(data['Short_MA'], label=f'{short_window} Days Moving Average')
plt.plot(data['Long_MA'], label=f'{long_window} Days Moving Average')
plt.scatter(data.index[data['Position'] == 1], data['Short_MA'][data['Position'] == 1], marker='^', color='g', label='Buy Signal', alpha=1)
plt.scatter(data.index[data['Position'] == -1], data['Short_MA'][data['Position'] == -1], marker='v', color='r', label='Sell Signal', alpha=1)
plt.title(f'{stock_symbol} Moving Average Crossover Strategy')
plt.legend(loc='best')
plt.show()
import numpy as np
import matplotlib.pyplot as plt
import yfinance as yf
# Stock data download (for example, Apple stock)
stock_symbol = 'AAPL'
data = yf.download(stock_symbol, start='2020-01-01', end='2025-01-01')
# Calculate Short and Long Moving Averages
short_window = 40
long_window = 100
data['Short_MA'] = data['Close'].rolling(window=short_window, min_periods=1).mean()
data['Long_MA'] = data['Close'].rolling(window=long_window, min_periods=1).mean()
# Generate signals
data['Signal'] = 0
data['Signal'][short_window:] = np.where(data['Short_MA'][short_window:] > data['Long_MA'][short_window:], 1, 0)
data['Position'] = data['Signal'].diff()
# Plotting the data
plt.figure(figsize=(12,6))
plt.plot(data['Close'], label='Close Price')
plt.plot(data['Short_MA'], label=f'{short_window} Days Moving Average')
plt.plot(data['Long_MA'], label=f'{long_window} Days Moving Average')
plt.scatter(data.index[data['Position'] == 1], data['Short_MA'][data['Position'] == 1], marker='^', color='g', label='Buy Signal', alpha=1)
plt.scatter(data.index[data['Position'] == -1], data['Short_MA'][data['Position'] == -1], marker='v', color='r', label='Sell Signal', alpha=1)
plt.title(f'{stock_symbol} Moving Average Crossover Strategy')
plt.legend(loc='best')
plt.show()
Disclaimer
The information and publications are not meant to be, and do not constitute, financial, investment, trading, or other types of advice or recommendations supplied or endorsed by TradingView. Read more in the Terms of Use.
Disclaimer
The information and publications are not meant to be, and do not constitute, financial, investment, trading, or other types of advice or recommendations supplied or endorsed by TradingView. Read more in the Terms of Use.