Editors' picks
PINE LIBRARY

FunctionLinearRegression

Library "FunctionLinearRegression"
Method for Linear Regression using array sample points.

linreg(sample_x, sample_y) Performs Linear Regression over the provided sample points.
  Parameters:
    sample_x: float array, sample points X value.
    sample_y: float array, sample points Y value.
  Returns: tuple with:
_predictions: Array with adjusted Y values.
_max_dev: Max deviation from the mean.
_min_dev: Min deviation from the mean.
_stdev/_sizeX: Average deviation from the mean.

draw(sample_x, sample_y, extend, mid_color, mid_style, mid_width, std_color, std_style, std_width, max_color, max_style, max_width) Method for drawing the Linear Regression into chart.
  Parameters:
    sample_x: float array, sample point X value.
    sample_y: float array, sample point Y value.
    extend: string, default=extend.none, extend lines.
    mid_color: color, default=color.blue, middle line color.
    mid_style: string, default=line.style_solid, middle line style.
    mid_width: int, default=2, middle line width.
    std_color: color, default=color.aqua, standard deviation line color.
    std_style: string, default=line.style_dashed, standard deviation line style.
    std_width: int, default=1, standard deviation line width.
    max_color: color, default=color.purple, max range line color.
    max_style: string, default=line.style_dotted, max line style.
    max_width: int, default=1, max line width.
  Returns: line array.
arraysMATHtechindicator

Pine library

In true TradingView spirit, the author has published this Pine code as an open-source library so that other Pine programmers from our community can reuse it. Cheers to the author! You may use this library privately or in other open-source publications, but reuse of this code in a publication is governed by House rules.

Disclaimer