KirillTrade036477

SUPER-MEGA CANDLES DESCRIPT!!!

SUPER-MEGA CANDLES DESCRIPT!!!
Open-source script

In true TradingView spirit, the author of this script has published it open-source, so traders can understand and verify it. Cheers to the author! You may use it for free, but reuse of this code in a publication is governed by House Rules. You can favorite it to use it on a chart.

Disclaimer

The information and publications are not meant to be, and do not constitute, financial, investment, trading, or other types of advice or recommendations supplied or endorsed by TradingView. Read more in the Terms of Use.

Want to use this script on a chart?
study(title = "Candles", overlay = true)

trend= input(5, minval=1, title="Trend in Bars")

DojiSize = input(0.05, minval=0.01, title="Doji size")
data=(abs(open - close) <= (high - low) * DojiSize)
plotchar(data, title="Doji", text='Doji', color=white)

data6=(close[1] > open[1] and open > close and open <= close[1] and open[1] <= close and open - close < close[1] - open[1] and open[trend] < open)
plotshape(data6, title= "Bearish Harami", color=red, style=shape.arrowdown, text="Bearish\nHarami")

data7=(open[1] > close[1] and close > open and close <= open[1] and close[1] <= open and close - open < open[1] - close[1] and open[trend] > open)
plotshape(data7,  title= "Bullish Harami", location=location.belowbar, color=lime, style=shape.arrowup, text="Bullish\nHarami")

data8=(close[1] > open[1] and open > close and open >= close[1] and open[1] >= close and open - close > close[1] - open[1] and open[trend] < open)
plotshape(data8,  title= "Bearish Engulfing", color=red, style=shape.arrowdown, text="Bearish\nEngulfing")

data9=(open[1] > close[1] and close > open and close >= open[1] and close[1] >= open and close - open > open[1] - close[1] and open[trend] > open)
plotshape(data9, title= "Bullish Engulfing", location=location.belowbar, color=lime, style=shape.arrowup, text="Bullish\nEngulfling")

upper = highest(10)[1]
data10=(close[1] < open[1] and  open < low[1] and close > close[1] + ((open[1] - close[1])/2) and close < open[1] and open[trend] > open)
plotshape(data10, title= "Piercing Line", location=location.belowbar, color=lime, style=shape.arrowup, text="Piercing\nLine")

lower = lowest(10)[1]
data11=(low == open and  open < lower and open < close and close > ((high[1] - low[1]) / 2) + low[1] and open[trend] > open)
plotshape(data11, title= "Bullish Belt", location=location.belowbar, color=lime, style=shape.arrowup, text="Bullish\nBelt")

data12=(open[1]>close[1] and open>=open[1] and close>open and open[trend] > open)
plotshape(data12, title= "Bullish Kicker", location=location.belowbar, color=lime, style=shape.arrowup, text="Bullish\nKicker")

data13=(open[1]<close[1] and open<=open[1] and close<=open and open[trend] < open)
plotshape(data13, title= "Bearish Kicker", color=red, style=shape.arrowdown, text="Bearish\nKicker")

//data14=(((high-low>4*(open-close))and((close-low)/(.001+high-low)>=0.75)and((open-low)/(.001+high-low)>=0.75))and open[trend] < open and high[1] < open and high[2] < open)
//plotshape(data14,  title= "Hanging Man", color=red, style=shape.arrowdown, text="Hanging\nMan")

//data2=(close[2] > open[2] and min(open[1], close[1]) > close[2] and open < min(open[1], close[1]) and close < open )
//plotshape(data2, title= "Evening Star", color=red, style=shape.arrowdown, text="Evening Star")

//data3=(close[2] < open[2] and max(open[1], close[1]) < close[2] and open > max(open[1], close[1]) and close > open )
//plotshape(data3,  title= "Morning Star", location=location.belowbar, color=lime, style=shape.arrowup, text="Morning\nStar")

//data4=(open[1] < close[1] and open > close[1] and high - max(open, close) >= abs(open - close) * 3 and min(close, open) - low <= abs(open - close))
//plotshape(data4, title= "Shooting Star", color=red, style=shape.arrowdown, text="Shooting\nStar")

//data5=(((high - low)>3*(open -close)) and  ((close - low)/(.001 + high - low) > 0.6) and ((open - low)/(.001 + high - low) > 0.6))
//plotshape(data5, title= "Hammer", location=location.top, color=white, style=shape.diamond, text="Hammer")

//data5b=(((high - low)>3*(open -close)) and  ((high - close)/(.001 + high - low) > 0.6) and ((high - open)/(.001 + high - low) > 0.6))
//plotshape(data5b, title= "Inverted Hammer", location=location.top, color=white, style=shape.diamond, text="Inverted\nHammer")