# FunctionMatrixCovariance

Library "FunctionMatrixCovariance"
In probability theory and statistics, a covariance matrix (also known as auto-covariance matrix, dispersion matrix, variance matrix, or variance–covariance matrix) is a square matrix giving the covariance between each pair of elements of a given random vector.
Intuitively, the covariance matrix generalizes the notion of variance to multiple dimensions. As an example, the variation in a collection of random points in two-dimensional space cannot be characterized fully by a single number, nor would the variances in the `x` and `y` directions contain all of the necessary information; a `2 × 2` matrix would be necessary to fully characterize the two-dimensional variation.
Any covariance matrix is symmetric and positive semi-definite and its main diagonal contains variances (i.e., the covariance of each element with itself).
The covariance matrix of a random vector `X` is typically denoted by `Kxx`, `Σ` or `S`.
~wikipedia.

method cov(M, bias)
Estimate Covariance matrix with provided data.
Namespace types: matrix<float>
Parameters:
M (matrix<float>): `matrix<float>` Matrix with vectors in column order.
bias (bool)
Returns: Covariance matrix of provided vectors.

---
en.wikipedia.org/wiki/Covariance_matrix
numpy.org/doc/stable...rated/numpy.cov.html
Pine library

In true TradingView spirit, the author has published this Pine code as an open-source library so that other Pine programmers from our community can reuse it. Cheers to the author! You may use this library privately or in other open-source publications, but reuse of this code in a publication is governed by House Rules.

Disclaimer